Home Page   |   Site Map   |   Contact
Path :  www.lphg.ch Ph.D. { Web Version } Chapter 3 3.7
Previous  |  Next
CV
Table of Contents
{ Abstract / Rιsumι }
Chapter 1
Chapter 2
{ 3.1 : FBG spectral response simulation in the coupled-mode formalism }
{ 3.2 : FBG synthesis and reconstruction }
3.3 : Calculated FBG spectral and impulse responses
{ 3.4 : Reconstruction examples }
{ 3.5 : Methods for characterizing FBGs with loss or with refractive index and period chirp components }
3.6 : Summary
Ph.D.  /  { Web Version }  /  Chapter 3  /  3.7 : References
MBI
Physics Diploma
Photos
Post-Doc
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Appendix
Other parts

3.7        References

3-1

T. Erdogan, “Fiber Grating Spectra”, JLT, 15 (8), p. 1277-1294 (1997)

3-2

J. Skaar, PhD dissertation, The Norwegian University of Science and Technology, Ch. 2, 5-15 (2000)

3-3

H. Kogelnik, “Filter response of nonuniform almost-periodic structure”, Bell Syst. Tech. J., 55, p. 109-126 (1976)

3-4

M. McCall, “On the Application of Coupled Mode Theory for Modeling Fiber Bragg Gratings”, JLT, 18 (2), p. 236-242 (2000)

3-5

J. Skaar, L. Wang and T. Erdogan, “On the systhesis of fiber Bragg gratings by layer peeling”, J. Quantum Electron., 37 (2), p. 165-173 (2001)

3-6

L.A. Weller-Brophy and D.G. Hall, “Analysis of waveguide gratings: application of Rouard’s method”, J. Opt. Soc. Am. A, 11, p. 2027-2037 (1985)

3-7

S. Huang, M. M. Ohn, M. LeBlanc and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings”, Smart Mater. Struct. 7, p. 248-256 (1998)

3-8

M. A. Muriel and A. Carballar, “Phase, time delay, and impulse response reconstruction from reflected power in uniform fiber Bragg gratings”, Proc. LEOS'96, p. 380-3811 (1996)

3-9

J. Skaar and H. E. Engan, “Distributed intragrating sensing using phase retrieval”, Proc. OFS'13, 588-591 (1999)

3-10

M. A. Muriel, J. Azaρa and A. Carballar, “Time-frequency representation applied to fiber grating synthesis”, Proc. ECOC’98, p. 383-384 (1998)

3-11

E. Brinkmeyer, “Simple algorithm for reconstruction fiber gratings from reflectometric data”, Opt. Lett., 20, p. 810-812 (1995)

3-12

M. Froggatt, “Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber”, Appl. Opt., 35, p. 5162-5164 (1996)

3-13

S. Huang, M. M. Ohn, M. LeBlanc and R. M. Measures, “Bragg intragrating structural sensing”, Appl. Opt., 34, p. 5003-5009 (1995)

3-14

M. A. Muriel and A. Carballar, “Internal Distributions in fiber Bragg gratings”, IEEE Phot. Tech. Lett., 9, p. 955-957 (1997)

3-15

J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings”, Journ. of Lightwave Tech., 16, p. 1928-1932 (1998)

3-16

K. Peters, Ph. Pattis, style="mso-spacerun: yes">  J. Botsis, Ph. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields", Journal of Optics and Lasers in Engineering, Vol 33, pp. 107 (2000)

3-17

A.M. Bruckstein, B.C. Levy and T. Kailath, “Differential methods in inverse scattering”, SIAM J. Appl. Math., 45 (2), p. 312-335 (1985)

3-18

A.M. Bruckstein and T. Kailath, “Inverse scattering for discrete transmission-line models”, SIAM Rev., 29 (3), p. 359-389 (1987)

3-19

R. Feced, M.N. Zervas and M.A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings”, J. Quantum Electron., 35, p. 1105-1115 (1999)

3-20

J. Skaar and R. Feced, "Reconstruction of gratings from noisy reflection data", J. Opt. Soc. Am. A, 19 (11) (2002)



Top   |   JavaScript
Path :  www.lphg.ch Ph.D. { Web Version } Chapter 3 3.7
Previous  |  Next