D.1 : Fourier Transforms Activate Navigation Menu D.3.1 : Matlab FFT and Gaussian example (Theory)

Home Page   |   Site Map   |   Contact   |   No Javascript

+

CV

+

Ph.D.

+

{ Web Version }

+

Table of Contents

+

{ Abstract / Résumé }

+

Chapter 1

+

Chapter 2

+

Chapter 3

+

Chapter 4

+

Chapter 5

+

Chapter 6

+

Chapter 7

+

Chapter 8

+

Appendix

+

{ Appendix A }

+

{ Appendix B }

+

{ Appendix C }

+

{ Appendix D }

+

D.1

+

D.2

+

D.3.1

+

D.3.2

+

D.4

+

{ Appendix E }

+

Other parts

+

Post-Doc

+

MBI

+

Physics Diploma

+

Photos

+

D.1 : Fourier Transforms

+

D.2 : Gaussian Function

+

D.3.1 : Matlab FFT and Gaussian example (Theory)

+

D.3.2 : Matlab FFT and Gaussian example (Example)

+

D.4 : References

D.2     Gaussian Function

D.2.1      Definition

The Gaussian function Gaus is defined as


(D-5)


This function centered at x0 has a height of unity and its area is equal to |b|.

D.2.2     Properties

Gaussian functions are often used for distributions like spectral density of a light beam. In this case, an important parameter is the distribution bandwidth found at mid-height DxFWHM, where FWHM means full width at half maximum. It is interesting to connect this value of DxFWHM with the Gaussian parameters b and x0 and to find the corresponding points x1,2 where the Gaussian is 0.5 (half the maximum)


(D-6)



(D-7)


The Fourier transform of a Gaussian is also a Gaussian


(D-8)



(D-9)


where (D-9) is a consequence of equations (D-3) and (D-4). The Fourier transform is complex with a maximum amplitude of |b| at x=0. The position x1,2 where the Fourier transform amplitude reach the half of its maximum and the FWHM DxFWHM are given by


(D-10)



(D-11)




D.1 : Fourier Transforms Activate Navigation Menu D.3.1 : Matlab FFT and Gaussian example (Theory)