3.1.2 : Analytic solution for homogeneous FBGs Activate Navigation Menu 3.1.4 : T-matrix method

Home Page   |   Site Map   |   Contact   |   No Javascript

+

CV

+

Ph.D.

+

{ Web Version }

+

Table of Contents

+

{ Abstract / Résumé }

+

Chapter 1

+

Chapter 2

+

Chapter 3

+

{ 3.1 }

+

3.1.1

+

3.1.2

+

3.1.3

+

3.1.4

+

3.1.5

+

{ 3.2 }

+

3.3

+

{ 3.4 }

+

{ 3.5 }

+

3.6

+

3.7

+

Chapter 4

+

Chapter 5

+

Chapter 6

+

Chapter 7

+

Chapter 8

+

Appendix

+

Other parts

+

Post-Doc

+

MBI

+

Physics Diploma

+

Photos

+

3.1.1 : Coupled-mode equations

+

3.1.2 : Analytic solution for homogeneous FBGs

+

3.1.3 : Numerical solution of the Riccati equation for non-homogeneous FBGs

+

3.1.4 : T-matrix method

+

3.1.5 : Causal T-matrix method

3.1         FBG spectral response simulation in the coupled-mode formalism

3.1.3        Numerical solution of the Riccati equation for non-homogeneous FBGs

We define the function r(z,d) = v(z,d)/u(z,d) [3-2] and the Riccati equation can be found by differentiating r with respect to z and substituting equations (3-2)


(3-6)


Using the boundary condition r(L,d) = 0, the equation can be numerically solved from the end of the grating backward to z = 0 using a Runge-Kutta method. The reflection coefficient amplitude is found to be r(d) = r(0,d). The calculation needs a larger number of steps in the Runge-Kutta routine to converge than for the T-matrix method presented hereafter.



3.1.2 : Analytic solution for homogeneous FBGs Activate Navigation Menu 3.1.4 : T-matrix method