Home Page   |   Site Map   |   Contact
Path :  www.lphg.ch Ph.D. { Web Version } Chapter 3 { 3.1 } 3.1.3
Previous  |  Next
CV
Table of Contents
{ Abstract / Résumé }
Chapter 1
Chapter 2
3.1.1 : Coupled-mode equations
3.1.2 : Analytic solution for homogeneous FBGs
Ph.D.  /  { Web Version }  /  Chapter 3  /  { 3.1 }  /  3.1.3 : Numerical solution of the Riccati equation for non-homogeneous FBGs
MBI
Physics Diploma
Photos
Post-Doc
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Appendix
Other parts
{ 3.2 }
3.3
{ 3.4 }
{ 3.5 }
3.6
3.7
3.1.4 : T-matrix method
3.1.5 : Causal T-matrix method

3.1         FBG spectral response simulation in the coupled-mode formalism

3.1.3        Numerical solution of the Riccati equation for non-homogeneous FBGs

We define the function r(z,d) = v(z,d)/u(z,d) [3-2] and the Riccati equation can be found by differentiating r with respect to z and substituting equations (3-2)


(3-6)


Using the boundary condition r(L,d) = 0, the equation can be numerically solved from the end of the grating backward to z = 0 using a Runge-Kutta method. The reflection coefficient amplitude is found to be r(d) = r(0,d). The calculation needs a larger number of steps in the Runge-Kutta routine to converge than for the T-matrix method presented hereafter.



Top   |   JavaScript
Path :  www.lphg.ch Ph.D. { Web Version } Chapter 3 { 3.1 } 3.1.3
Previous  |  Next