Home Page   |   Site Map   |   Contact
Path :  www.lphg.ch Ph.D. { Web Version } Chapter 3 { 3.1 } 3.1.4
Previous  |  Next
CV
Table of Contents
{ Abstract / Résumé }
Chapter 1
Chapter 2
3.1.1 : Coupled-mode equations
3.1.2 : Analytic solution for homogeneous FBGs
3.1.3 : Numerical solution of the Riccati equation for non-homogeneous FBGs
Ph.D.  /  { Web Version }  /  Chapter 3  /  { 3.1 }  /  3.1.4 : T-matrix method
MBI
Physics Diploma
Photos
Post-Doc
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Appendix
Other parts
{ 3.2 }
3.3
{ 3.4 }
{ 3.5 }
3.6
3.7
3.1.5 : Causal T-matrix method

3.1         FBG spectral response simulation in the coupled-mode formalism

3.1.4        T-matrix method

In the T-matrix method [3-2 to 3-4], the grating is divided in N sections of width Dj (j = 1, …, N), where the parameters Dnac, Dndc and L are constant. The grating is then defined by N sections with coupling coefficients qj and physical thickness Dj (Fig. 3-2).

Fig. 3-2 FBG Slicing in sub-sections for the T-matrix method

The knowledge of the fields uj and vj at the entrance of section j allows to find the fields uj+1 and vj+1 at the layer output. This relation can be expressed in the form of a transfer matrix relation


(3-7)


where


(3-8)


where gj2 = |q j |2 - d2. The fields u1, v1 and uN+1, vN+1 at the grating entrance and output respectively, are then related to each other by


(3-9)


The reflection coefficient amplitude r(d) is determined with the limit conditions u1 = 1 and vN+1 = 0 : r(d) = v1 = -T21/T22. The transmission coefficient amplitude t(d) is found from the limit conditions u1 = 0 and vN+1 = 1 : t(d) = v1 = 1/T22.

The proposed T-matrix formulation takes into account the overlap integral h that is often neglected [3-1, 3-4] and the fringe visibility effect can be integrated in the definition of the refractive index distributions Dndc and Dnac.



Top   |   JavaScript
Path :  www.lphg.ch Ph.D. { Web Version } Chapter 3 { 3.1 } 3.1.4
Previous  |  Next